Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 1012, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-2275346

ABSTRACT

Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16-20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement.


Subject(s)
COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Quarantine/legislation & jurisprudence , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Contact Tracing , England/epidemiology , Genome, Viral/genetics , Genomics , Health Impact Assessment , Humans , SARS-CoV-2/classification , Travel/legislation & jurisprudence , Travel-Related Illness
2.
Lancet Microbe ; 3(2): e151-e158, 2022 02.
Article in English | MEDLINE | ID: covidwho-1440435

ABSTRACT

We reviewed all genomic epidemiology studies on COVID-19 in long-term care facilities (LTCFs) that had been published to date. We found that staff and residents were usually infected with identical, or near identical, SARS-CoV-2 genomes. Outbreaks usually involved one predominant cluster, and the same lineages persisted in LTCFs despite infection control measures. Outbreaks were most commonly due to single or few introductions followed by a spread rather than a series of seeding events from the community into LTCFs. The sequencing of samples taken consecutively from the same individuals at the same facilities showed the persistence of the same genome sequence, indicating that the sequencing technique was robust over time. When combined with local epidemiology, genomics allowed probable transmission sources to be better characterised. The transmission between LTCFs was detected in multiple studies. The mortality rate among residents was high in all facilities, regardless of the lineage. Bioinformatics methods were inadequate in a third of the studies reviewed, and reproducing the analyses was difficult because sequencing data were not available in many facilities.


Subject(s)
COVID-19 , COVID-19/epidemiology , Disease Outbreaks , Genomics , Humans , Long-Term Care , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL